Appendix

Radio Tradeoffs - 1

Channel Bandwidth

- Use existing channel allocations or acquire new spectrum
 - *existing allocations may limit technology choice (and thus bandwidth) and may be heavily used
 - competition for resources
 - **★** new spectrum = new opportunities
- larger bandwidth provides scope for enhanced services, wider channel bandwidths and higher capacity
 - * data, video and higher voice quality
- multiple access:
 - **★TDMA** and CDMA channels improve economics for higher subscriber densities
 - ★ facilitates bandwidth flexibility
 - *facilitates future-proofing for new services

Channel Coding

coding adds additional information to assist accurate recovery of the signal under poor propagation conditions. Coding may be applied at the RF signal and/or at the signal source

- Complex tradeoff between RF bandwidth needs, Coverage and RF Transmission Quality
- Possible secondary impacts: heavy voice compression affects delay and possibly audio quality
- Data transparency may require higher rate voice codecs OR dynamic selection of specific data/FAX modems or inter-working functions
 - ★For example, use of 8kb/s voice channels will preclude the transport of >8kb/s data signals without special channel processing or channel concatenation

Channel Coding

Channel Coding

Required RF Quality

Radio Tradeoffs - 3

Channel Access and Duplexing

~-. 1

- Multiple access methods:
 - *choice of FDMA, TDMA or CDMA impact system design/ behavior
 - ★loosely coupled to market requirements, but no clear winner without detailed analysis
 - most can be tuned to meet requirements, but possibly with cost impact
- Time-Division Duplexing (TDD) vs. Frequency-Division Duplexing (FDD):
 - **★**both transmit and receive share the same frequency with TDD, FDD requires two frequencies
 - **★TDD** simplifies handset and radio link management
 - ★TDD limits reach and bandwidth in larger systems and may require tight adjacent cell synchronization

Radio Tradeoffs - 4

Cell Reach

- >100m for low power, low antennas
- 50-80 km for high power, high antennas
- highly dependent on terrain and environment (urban/rural)
- Complex economic, capacity, density tradeoff
- antennas probably subject to zoning regulations
- transmit power subject to FCC regulation

Macrocell

Minicell

Metrocell

Remote RF

Single Bay

Capacity

- function of user channels per cell, which depends on many inter-related variables and some uncontrollable variables
 - *regulatory: allocated spectrum,
 - *operator: designed grade of service, coverage requirements, equipment choice, cell size
 - *manufacturer: access technique, coding technique,
 - **★**environment: user density
 - ★very difficult to impartially compare between systems